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SENSITIVITIES IN LARGE EDDY SIMULATION AND IMPROVED
ESTIMATES OF TURBULENT FLOW FUNCTIONALS ∗
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Abstract. We consider a prototypical problem: simulate velocity and pressure in a turbulent
flow using large eddy simulation (LES) and then use the results to estimate the force the underlying
turbulent flow exerts on an immersed body. For eddy viscosity-type LES models we develop the
appropriate continuous sensitivity equation and show how it can improve the functional estimate by
using the sensitivity with respect to the user-selected length scale to incorporate the effects of the
underlying unresolved small-scale fluctuations on the functionals sought.
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1. Introduction. For the foreseeable future, computational resources will be
insufficient for the direct numerical solution of most turbulent flow problems. On the
other hand, important decisions are made and significant designs produced based on
estimates of quantities in turbulent flow that are simulated by using various models
of turbulence. Even when using the model that current practice considers best for
a particular application, often the reliability of the model’s predictions for the spe-
cific application is not assessed. This situation is particularly troublesome because
solutions of turbulence models can display sensitivity with respect to the user-elected
model parameters, in addition to the sensitivity with respect to the upstream flow,
subgrid model, and numerical realization of it (reported by Sagaut and Lê [19]).

For example, calculating the force a fluid exerts on an immersed body, such as
lift or drag, involves first solving the Navier-Stokes equations

ut + ∇ · (u u) + ∇ · σ(u, p) = f, in Ω× (0, T )

σ(u, p) := pI − 2ν∇su, ∇su :=
1
2
(∇u + ∇ut),(1.1)

∇ · u = 0, in Ω× (0, T ), u = 0 on ∂Ω and u(x, 0) = u0(x), in Ω.

If B denotes the boundary of the immersed body, next the force must be calculated
on B:

force on B =
∫

B
n̂ · σds =

∫

B
n̂ · [pI − 2ν∇su] ds,(1.2)

n̂ = outward unit normal to B.

This calculation requires accurate estimation of p and derivatives of u on the flow
boundary—a problem harder than accurately predicting the turbulent velocity itself.

The basic approach used for turbulent flows has been to replace the Navier–Stokes
equations (1.1) by a turbulence model and then insert the velocity-pressure predicted
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by the turbulence model into the right-hand side of the functional, such as (1.2).
Uncertainties arise immediately, however, because of the typical sensitivity to the
model’s input parameters. Perhaps more important, turbulence models approximate
flow averages. Thus, all the information on fluctuations is lost in them. However,
the small-scale fluctuations can have a determining role in functionals such as (1.2).
Mathematically, the reason that the derivatives occurring in (1.2) overweigh velocity
changes occurring across small distances. One concrete example is drag in the flow
over a dimpled vs. smooth golf ball; a related example is riblets. Both change the
geometry (and flow) on scales below typical feasible meshes. Indeed, drag reduction
strategies of injection of small amounts of microbubbles or polymers near a body are,
in part, based on the expectation that a little power input to alter the flow’s small
scales can have a large effect on the global drag.

This paper considers functional estimation and solution sensitivity for models
arising in large eddy simulation. In Section 2 we apply the continuous sensitivity
idea to a common class of large eddy simulation models. The sensitivity equation
approach has the great advantage of giving computable quantitative estimates of the
local sensitivity of the model’s predicted flow field to variations in the input parame-
ters. Thus, a sensitivity calculation will show in which regions the predicted velocities
are reliable and hence believable and in which regions those predicted velocities are
highly sensitive and hence should be viewed with greater suspicion. We focus on the
case of sensitivity with respect to the user-selected length scale δ. The reason for this
focus is (Section 3) that the sensitivity of the flow with respect to variations in δ can
be used to improve the estimate of flow functionals, such as lift and drag, which can
depend strongly on the unknown and unresolved turbulent fluctuations.

2. The Sensitivity Equation of Eddy Viscosity Models. The continuous
sensitivity equation approach is becoming increasingly important in computational
fluid dynamics but is not yet a common tool in large eddy simulation of turbulence.
In this section we apply the sensitivity idea to find the continuous sensitivity equation
with respect to variations in the cutoff length scale delta. For a general treatment
of sensitivities and applications to other flow problems, see (among many interesting
works) [3, 4, 10, 9, 20].

Suppose a local spatial filter has been selected (denoted by an overbar) associated
with the length scale δ. Filtering the Navier-Stokes equations leads to the problem of
closure, and one common class of closure models is based on the Boussinesq, or eddy
viscosity, hypothesis. The model we consider takes the general form of finding the ap-
proximate large-scale velocity w(x, t) approximately w and pressure q(x, t) satisfying
∇ · w = 0 and

(2.1) wt + ∇ · (w w) − ν∆w + ∇q −∇ · (νT (δ, w)∇sw) = f,

where ν is the kinematic viscosity, f is the space filtered body force, and νT is the
eddy viscosity coefficient that must be specified to select the model. As an example,
the Smagorinsky model, while not considered the best, is perhaps the most commonly
used model and is given by the eddy viscosity choice

(2.2) νT = νSmag(δ, w) := (Csδ)2|∇sw|, Cs ∼ 0.1.

For other eddy viscosity models see the presentation in [18, 13, 2, 16, 12]. Once the
Smagorinsky constant, Cs, and the initial and boundary conditions are specified, for
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a given δ the equations (2.1), (2.2) uniquely determine a solution w, q implicitly as a
function of δ1.

Definition 2.1. Let w, q be the solution of (2.1). The sensitivity of w, q to
variations in δ is defined to be the derivatives of w, q with respect to δ,

wδ :=
∂w

∂δ
, qδ :=

∂q

∂δ
.

One can easily derive continuous equations for the sensitivities by implicit differenti-
ation of (2.1), with respect to δ. Doing so gives the equations ∇ · wδ = 0 and

wδ,t + ∇ · (wwδ + wδw) − ν∆wδ + ∇qδ(2.3)

−∇ · ([ ∂

∂δ
νT (δ, w) +

∂

∂w
νT (δ, w) · wδ]∇sw + νT (δ, w)∇swδ) =

∂

∂δ
(f)

Thus, once the large eddy velocity and pressure, w, q, are calculated, the corresponding
sensitivities can be found by solving a linear problem for wδ, qδ that is precisely the
nonlinear large eddy simulation model linearized about (w, q). Thus, sensitivities can
be quickly and economically calculated by modifying the program used to calculate
(w, q). On the other hand, one can simply use an unmodified program to test whether
sensitivity information will be useful for a given application before beginning program
modifications. This approach involves solving the model for w(δ1) and w(δ2) for
|δ1 − δ2| small and computing sensitivities by means of the divided difference

s =
w(δ2) − w(δ1)

δ2 − δ1
.

In our numerical simulating in Section 5 we use the latter approach.
For the Smagorinsky model we have νT = (Csδ)2|∇sw|. Thus the bracketed term

is

(2.4) [νT,δ + νT,w · wδ] = 2Cs
sδ|∇sw| + (Csδ)2

(
∇sw

|∇sw|

)
: ∇swδ.

2.1. Calculating fδ = ∂
∂δ f . If the body forces acting on the flow are smooth

enough, fδ is negligible. Otherwise, the right-hand side of (2.3) f δ can play an
important role in the sensitivity equation because it incorporates information about
body force fluctuations. When f is not smooth, the exact value of fδ depends on the
precise filter specified. When f is defined by convolutions, extending f by zero off the
flow domain and then defining

f :=
∫

Rd

δ−dg

(
x′

δ

)
f(x − x′)dx, g(x) := chosen filter kernel,

then f δ can be calculated explicitly.
When f is defined by using differential filters [7, 16, 13, 2], a small modifica-

tion is needed that depends on the exact differential filter specified. Two interesting
differential filters are defined by solving the shifted Poisson problem for f ,

(2.5) −δ2∆f + f = f, in Ω, f = 0 on ∂Ω,

1Fundamental theoretical questions arise even at this first step. For example, it is not known
whether the solution of the Smagorinsky model is a C1 function of δ for δ > 0 or whether the branch
is continuous down to δ = 0.
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and by solving the shifted Stokes problem for f ,

(2.6) −δ2∆f + f + ∇λ = f and ∇ · f = 0, in Ω, and f = 0 on ∂Ω.

The second differential filter (2.6) preserves incompressibility and is thus interesting
in spite of its costing more than the first.

With the first filter f = (−δ2∆ + 1)−1f , we differentiate implicitly with respect
to δ to derive an equation for fδ:

(−δ2∆+ 1)fδ = 2δ∆f = (via (2.4)) =
(
−2

δ

)
(f − f).

Thus,

(2.7) f δ =
(
−2

δ

)
(f ′).

Analogously, we obtain the initial condition for wδ

(2.8) wδ(x, 0) = u0,δ(x) =
(
−2

δ

)
(u′

0).

Here, we denote by h′ the fluctuation of a function h(x), that is, h′ = h − h.

2.2. Boundary Conditions for the Sensitivities. Boundary conditions for
sensitivities must be specified. The most interesting and important cases are sensi-
tivity with respect to the (modeled) upstream conditions and the (modeled) outflow
conditions [19]. At this point, a mathematical formulation of the former is unclear,
whereas there exist many options for the latter. Thus we consider here only boundary
conditions for the sensitivities at solid walls.

With a differential filter like (2.5) and (2.6) the boundary conditions for the
sensitivities are clear because there exist no error and no variability with respect to δ
in the conditions for w on the wall: wδ = 0 on the boundary.

Some slight modifications of the wall models are necessary to compute sensitiv-
ities when near-wall models are used. These are usually associated with averaging;
see [6] for some mathematical issues involved. Many near-wall models or numerical
boundary conditions are possible. For specificity and clarity we treat the simplest
ones considered in, for example, [14], in which the large structure’s action on the
boundary are modeled by no penetration and slip with friction conditions:

w · n̂ = 0 and β(δ, ν)w · τ̂j + n̂ · (ν∇sw) · τ̂j = 0, on ∂Ω,

where n̂ is the unit normal to the boundary and τ̂1, τ̂2 are a system of tangent vec-
tors on the boundary. Implicit differentiation with respect to δ gives the boundary
conditions for the sensitivities:

wδ · n̂ = 0 and β(δ, ν)wδ · τ̂j + n̂ · (2ν∇swδ) · τ̂j = −βδ(δ, ν)w · τ̂j on ∂Ω.

Since β(δ) increases monotonically to infinity as δ → 0, [14], βδ > 0. Thus, slippage
in the flow velocity w acts to decrease the slippage in the sensitivities when they are
aligned and increase it when they are opposed.
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3. Improving Estimates of Functionals of Turbulent Quantities. The
usual procedure to estimate a flow functional is to compute the LES velocity w ap-
proximating the fluid motion on scales larger than the cut-off length scale and then to
approximate the sought solution functional J(u) by J(w). This can be a reasonable
approximation when the small scales do not influence the functional and when w is a
good approximation to the large scales of u. When the functionals involve derivatives
of u, however, those derivatives tend to overweigh the small scales in the functional .
We show in this section how the approximation of J(u) can be improved to incorpo-
rate some of the unresolved scale effects through sensitivity information. Numerical
tests of the improvement of flow functionals by using sensitivity information (with ac-
companying mathematical support) have yielded positive results for a different eddy
viscosity model in [17].

We suppose that the LES solution w implicitly defines a smooth function of
δ, w = w(δ), with the property that

(3.1) w(δ) → u as δ → 0.

This is a minimal analytic consistency condition for a large eddy simulation, which
nevertheless has so far been proven to hold for only a few large eddy models; see, for
example, [5, 15]. If the functional is C1, then the composition

δ &→ J(w(δ)) =: J(δ)

defines a smooth map. The value J(δ) = J(w(δ)) is computable while J(u) =
J(w(0)) = J(0) is sought. Since δ is small, the linear approximation to J(0) is
justified. This yields the following approximation to J(u):

(3.2) J(u) .= J(w(δ)) − δJ ′(w(δ)) · wδ.

The increment δ J ′(w(δ)) incorporates effects of unresolved scales on J(u) and is
computable once the solution sensitivities wδ are calculated.

If the functional itself is regularized, J(u) is approximated by a δ dependent
approximation J(δ, w(δ)). Then (3.2) is modified by

(3.3) J(u) .= J(δ, w(δ)) − δ(Jw(δ, w(δ)) · wδ + Jδ(δ, w)).

3.1. Example: Lift, Drag, and Other Fluid-Boundary Interactions in
Turbulent Flows. In many applications, forces exerted by fluid on boundaries must
be estimated. In this case the functional is given by

(3.4) J(u, p) :=
∮

B
n̂ · [pI − 2ν∇su] · â ds,

where â is a unit vector and B is the boundary of the immersed body. If â points in
the direction of motion, J(u) represents drag, whereas if â points in the direction of
gravity, J(u) represents lift.

For general surfaces B, the straightforward approximation of J(u, p) by J(w, q) is
not so clear because (see, for example, [18]) while w(δ) → u as δ → 0, q(δ) → p + 1/3
trace (R), where R is the large eddy subgrid stress tensor

Rij := uiuj − uiuj.
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Thus, for a general surface B, q(δ) is not a direct approximation to p and its use in
(3.4) could skew the estimate of the force on that surface B. For a wall B, the situation
is clearer. Indeed, let k(v) := 1/2|v|2(x, t) denote the kinetic energy distribution of a
velocity field v. Then we have

(3.5) q(δ) = p + (2/3)(k(u) − k(u)).

Since w approximates u, the excess pressure contribution to q from k(u) is computable
and thus correctable by using k(w), but that contributed by k(u) is not easily cal-
culable for general surfaces. If B is a solid wall and the averaging operator, such as
(2.5) and (2.6), preserves the no-slip condition, then k(u) = k(u) = 0 on B, and p can
be estimated on B by q(δ).

Since the boundary-force functional J(w, q), given by (3.4), is a linear functional
J ′ = J , we obtain the corrected approximation to the force on B:

J(u, p) ∼ J(w, q) − δJ(wδ , qδ) = J(w − δwδ, q − δqδ) =∮

B
n̂ · [(q − δqδ)I − 2ν∇s(w − δwδ)] · â ds.(3.6)

3.2. Example: Flow Matching. In flow matching, a desired velocity field u∗

is specified, the flow is simulated, a functional such as

J(u) :=
1
2

∫

Ω×(0,T )
|u − u∗|2dx dt

is calculated, and the design or control parameters are used to drive J(·) to its mini-
mum value. Thus, one aspect of flow matching involves getting the best estimate of
J(·); this is challenging in the case of a turbulence flow.

Abstractly, given the LES velocity w and its sensitivity wδ, (3.2) provides an
estimate of J(u) improving the estimate given by J(w). Since J(·) is quadratic, it is
straightforward to calculate

J ′(w)wδ =
∫

Ω×(0,T )
(w − w∗) · wδdx dt,

giving the approximation

(3.7) J(u) .=
∫

Ω×(0,T )

1
2
|w − u∗|2 − δ(w − u∗) · wδdx dt.

4. Approximating Sensitivities Requires a Finer Mesh. If the selected
LES model is accurate, its solution will not vary over scales smaller than O(δ) 2. On
the other hand, if the sensitivity wδ captures some information in fluctuations through
the following expansion,

u
.= w − δwδ + O(δ2),

then wδ will vary on scales smaller than O(δ). Formal asymptotics can give some
preliminary insight into the width of transition regions of wδ (and thus into mesh

2A general proof of this is open for almost all LES models. Even for homogeneous isotropic
turbulence, estimates are not available for the smallest persistent scale in the solution of many LES
models.
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design for the sensitivity equation). The correct beginning point for this is an under-
resolved laminar flow with a simple, Prandtl boundary layer along a flat plate. The
simplest interesting eddy viscosity is a constant νT = O(δ2) chosen so that the O(ν

1
2
T )

boundary layer in w is spread over an O(δ) transition region. We thus suppose that
ν ' νT = O(δ2), and the flow domain in the upper half plain and the model velocity
approach a fixed value (v, 0). Here v increases from v = 0 to v = O(1) rapidly as y
increases above the plate.

Consider thus the equilibrium problems for w,

w ·∇w − (ν + νT )δw + ∇q = 0,

and its sensitivity equation for s = wδ,

s ·∇w + w ·∇s − (ν + νT )δs − ν′
T (δ)δw + ∇qδ = 0.

We expect the x-sensitivity s1 to go from 0 to O(1) back to near 0 as y increases from
the wall. Supposing that this result occurs over an O(α) transition region (and follow-
ing the analysis of laminar boundary layers, e.g., [8]), we consider the x-component
of the sensitivity equation:

w1s1,x +w2s1,y + s1w1,x + s2w1,y − νT (s1,xx + s1,yy)− ν′
T (δ)(w1,xx +w1,yy)+ qδ,x = 0.

The relative orders of magnitude in the transition region of each term in the above
equation are

O(1)O(1) + O(δ)O(α−1) + O(1)O(1) +
O(α)O(δ−1) + O(δ2)(O(1) + O(α−2)) + O(δ)(O(1) + O(δ−2)) = 0.

If we keep in mind the expectation that α < δ, the dominant terms are then
(

δ
α

)2

and 1
δ . Equating this suggests that α ∼ δ

3
2 ∼= δ

1
2 ν

1
2
T , suggesting that the sensitivity

equation has a boundary layer in this case thinner than that of w by a factor of δ
1
2 .

This prediction is confirmed in the numerical tests in Section 5; see especially Figure
5.5.

5. Numerical Simulations. We use the FreeFem package [11] to validate the
analytical findings concerning the width of the boundary layer of the sensitivity wδ

and to assess the estimation potential of the sensitivity-based method.
For validation, we used a fine mesh to calculate the “truth” Navier-Stokes solution

corresponding to δ = 0. The “truth” sensitivities of the model are calculated on that
fine mesh by divided differences as outlined in Section 2. In this way we uncouple
the important issue of continuous vs. discrete sensitivities from evaluating either’s
potential for improved estimation of flow functionals. The “truth” mesh is displayed
in Figure 5.1. Of course, normally the LES+sensitivity calculations are performed on
a mesh coarser than required for the Navier-Stokes equation, and numerical errors in
the sensitivity calculation must be studied. For first steps in the numerical analysis
of sensitivity equations in computational fluid dynamics, see [17].

5.1. Computational Setup. For our numerical simulations, we consider the
rectangular domain from Figures 5.2 and 5.3. The domain is 8 units long and 2 units
wide. A disk of radius 0.15 is placed at (3, 1). We impose no-slip boundary conditions
on the horizontal walls and on the boundary of the disk, a do-nothing condition at
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Fig. 5.1. Final mesh.

the outflow (right) boundary, and a time-independent parabolic profile at the inflow
boundary, with the rule 3y(2 − y). As initial conditions we use the solution of the
steady-state Stokes problem with the same boundary conditions.

We use an implicit-explicit time-stepping scheme to approximate the solution of
the equation (2.1) :

wk+1 − wk

∆t
+ ∇ · (wk wk) − ν∆wk+1 + ∇qk+1 −∇ · (νT (δ, wk)∇swk+1) = 0,(5.1)

∇ · wk+1 = 0,

where we denote the velocity at time step k by wk. The problem is subsequently
discretized in space by a Taylor-Hood finite element from FreeFem [11], and is im-
plemented as a FreeFem script, where, given wk, we compute wk+1. We choose a
time step ∆t = 0.015 and an inverse of the Reynolds number ν = 1

200 , and we run
the computation for 500 steps. The mesh is initialized to have around 10,000 degrees
of freedom on the first pass and is subsequently refined every 50 time steps. The
final mesh is presented in Figure 5.1. We use the Smagorinsky model (2.2) with an
appropriate choice of δ, specified below.

In Figures 5.2 and 5.3, respectively, we have presented the contour plot of the
Euclidean norm of the velocity and the square root of the absolute value of the vorticity
at four time steps of the simulation for δ = 0. In the latter case, we chose the square
root of the vorticity as a function to plot because it has the same contour plot as the
vorticity function but is more sensitive in the range of interest. The results show a
time-periodic behavior where vortices are generated behind the disk and shed by the
flow; which is what was observed in other computational studies. Animations of the
simulations that more clearly support this observation can be found at the website
[1]. The result of the Navier-Stokes simulation at 7.5 seconds, which thus represents
a realistic velocity distribution, is the starting point for our sensitivity estimations.

5.2. Evaluation the Boundary Layer of the Sensitivity. We computed the
sensitivity at time 7.5 seconds by running the numerical scheme (5.1) for one time
step with δ = 0.05, denoting the result by ŵk, and one time step with δ = 0, denoting
the result by wk and approximating the sensitivity as

wk
δ =

ŵk − wk

δ
.
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IsoValue
0.0944302
0.283291
0.472151
0.661011
0.849872
1.03873
1.22759
1.41645
1.60531
1.79417
1.98303
2.17189
2.36075
2.54961
2.73848
2.92734
3.1162
3.30506
3.49392
3.68278

Norm of Velocity 
IsoValue
0.0966571
0.289971
0.483286
0.6766
0.869914
1.06323
1.25654
1.44986
1.64317
1.83649
2.0298
2.22311
2.41643
2.60974
2.80306
2.99637
3.18969
3.383
3.57631
3.76963

Norm of Velocity 

IsoValue
0.0968872
0.290662
0.484436
0.67821
0.871985
1.06576
1.25953
1.45331
1.64708
1.84086
2.03463
2.22841
2.42218
2.61595
2.80973
3.0035
3.19728
3.39105
3.58483
3.7786

Norm of Velocity 
IsoValue
0.0953394
0.286018
0.476697
0.667376
0.858055
1.04873
1.23941
1.43009
1.62077
1.81145
2.00213
2.19281
2.38349
2.57416
2.76484
2.95552
3.1462
3.33688
3.52756
3.71824

Norm of Velocity 

Fig. 5.2. Contour plot of the velocity at 1.65 second time intervals, ending with the snapshot
at 7.5 seconds.

In Figure 5.4 we plot side by side wk and |wk−ŵk| (sensitivity scaled by δ), where the
latter is measured in the local 2-norm. The results show that the largest sensitivity
occurs roughly at ± 3π

4 , which is also the place where the boundary layer appears to
be the thinnest for the velocity wk.

Subsequently, we computed the wk and wk
δ profile on a direction that originates

on the center of the disk at the angle −0.79π. In Figure 5.5 we plot the scaled
versions of the sensitivity |wk

δ |, the velocity |wk|, and the sensitivity |wk
δ | stretched

by δ−0.5, which we denote by |wk
δ (δ−0.5·)|. The scaling is done by dividing the data

to the largest values of the respective quantities along the specified direction. We see
that the position of the maximum of the stretched sensitivity |wk

δ (δ−0.5·)| coincides
with the maximum of the velocity |wk|, which validates our theoretical finding that
the boundary layer of the sensitivity is δ0.5 thinner than the boundary layer of the
velocity.

5.3. Functional Estimation. We now turn to the problem of estimating func-
tionals of the Navier-Stokes flow δ = 0 using computations with δ (= 0 followed by
sensitivity-based correction. In our computations, we consider the computation of the
drag functional (3.4) using the correction (3.6).
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IsoValue
0.337603
1.21649
2.09537
2.97426
3.85314
4.73203
5.61091
6.4898
7.36868
8.24757
9.12645
10.0053
10.8842
11.7631
12.642
13.5209
14.3998
15.2786
16.1575
17.0364

Vorticity 
IsoValue
0.455476
1.51251
2.56954
3.62657
4.6836
5.74064
6.79767
7.8547
8.91173
9.96876
11.0258
12.0828
13.1399
14.1969
15.2539
16.311
17.368
18.425
19.4821
20.5391

Vorticity 

IsoValue
0.606795
1.8575
3.10821
4.35892
5.60963
6.86034
8.11105
9.36176
10.6125
11.8632
13.1139
14.3646
15.6153
16.866
18.1167
19.3674
20.6181
21.8689
23.1196
24.3703

Vorticity 
IsoValue
0.612938
1.98572
3.35851
4.7313
6.10408
7.47687
8.84965
10.2224
11.5952
12.968
14.3408
15.7136
17.0864
18.4592
19.8319
21.2047
22.5775
23.9503
25.3231
26.6959

Vorticity 

Fig. 5.3. Contour plot of the square root of the vorticity at 1.65 seconds time intervals, ending
with the snapshot at 7.5 seconds.

Since we use a mesh that is finer than the one needed to resolve the sensitivity wδ,
and since the correction of the functional (3.4) is a linear function of wδ, determining
wδ by divided differences and then using it in the correction is equivalent to computing
the drag functional for δ (= 0 and then using divided differences for drag estimation
at 0.

We computed the drag functional on the disk in the x direction, from the pressure
and velocity derivative data, obtained from running the Smagorinsky model for one
0.015 second time step for the δ in Table 5.1. The computed values are presented
in Table 5.1, with entry “Direct Computation” in the “Method” column. We see
that the correction using first-order sensitivities (linear correction) (3.6) results in a
57% reduction of the relative error, whereas correction using second-order sensitivities
(quadratic correction) results in a 93% reduction of the relative error, both compared
to the case where the drag is estimated by using only its value at δ = 0.2. We represent
these results graphically in Figure 5.6. Both the corrected values and their methods
are listed in Table 5.1.

While we did not explicitly describe a higher-order sensitivity development, that
extension is straightforward, and we interpret the above results as evidence of the
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IsoValue
-0.200933
0.100345
0.301196
0.502048
0.7029
0.903752
1.1046
1.30546
1.50631
1.70716
1.90801
2.10886
2.30972
2.51057
2.71142
2.91227
3.11312
3.31397
3.51483
4.01696

Norm of Velocity 
IsoValue
-0.0136428
0.00679957
0.0204278
0.0340561
0.0476843
0.0613126
0.0749408
0.0885691
0.102197
0.115826
0.129454
0.143082
0.15671
0.170339
0.183967
0.197595
0.211223
0.224852
0.23848
0.27255

Difference 

Fig. 5.4. Velocity and sensitivity at 7.5 seconds.

δ Drag Method
0.25 -17.20 Direct Computation
0.225 -17.96 Direct Computation
0.2 -18.86 Direct Computation
0.0 -31.59 Direct Computation
0.0 -26.08 Linear Correction
0.0 -30.65 Quadratic Correction

Table 5.1
Drag values

excellent potential of the sensitivity-based estimation method, described in this work.

6. Conclusions and Future Prospects. Many fundamental theoretical ques-
tions in LES are still open, and many of these are important for the validation of the
sensitivity approach to estimating model uncertainty. Nevertheless, we have seen that
the continuous sensitivity equation approach in these tests has given a remarkably ac-
curate estimate of the solution change as the lengthscale parameter varies provided
the sensitivity equation is appropriately resolved itself. Formal asymptotics gives esti-
mates of the mesh-resolution requirements of the continuous sensitivity equation that
are, again, remarkably accurate in our test.

The success of the sensitivity equation approach as shown here (and in other tests)
suggests its broader usefulness and hints at the possibility of establishing a general,
analytic foundation for the method in LES.
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